
a software developer and a data scientist
in an open science world

lennart martens

lennart.martens@ugent.be
computational omics and systems biology group
Ghent University and VIB, Ghent, Belgium

Not too long ago, life sciences researchers managed
very well without computers

But then these researchers embraced technology,
and its expensive instruments

microarray shotgun LC-MS next-gen sequencing

And the embedded bioinformatician arrived
in the life sciences research team

microarray shotgun LC-MS next-gen sequencing

At the same time, the Researcher-Developer
started to gain prominence as well

microarray shotgun LC-MS next-gen sequencing

And now we have entire research groups
simply maximising their keyboard time!

data

repository

An open data exchange ecosystem allows for
productive (and completely novel!) data uses

Adapted from: Vaudel, Proteomics, 2016

Open Data Exchange Ecosystem

use
reuse

reprocess
repurpose

Developing (academic) software presents
a particular diminishing returns curve

Paper

Extra
citations

Which it is good to keep in mind when you start

Paper

Extra
citations

It actually works!

All the time

In all cases

Not to scale!

Making things that actually work can be harder than it looks,
but it should not discourage you!

Target: peppermint icicles

Result: peppermint ... eh … erm…

Many academic informatics approaches, even published,
may not be meant for (all) users

Martens, Kohlbacher and Weintraub, Journal of Proteome Research, 2014

Three manuscript types with different requirements
in the Journal of Proteome Research

Martens, Kohlbacher and Weintraub, Journal of Proteome Research, 2014

The open source paradigm is old and venerable,
and certainly not only linked to science

The changing point of view of Microsoft
provides an interesting angle on FOSS

2001, Steve Ballmer, CEO of Microsoft:
“Linux is a cancer that attaches itself in an
intellectual property sense to everything it
touches.”

2018, Satya Nadella, CEO of Microsoft:
“We are all in on open source.”

Open source code allows others to re-use, to correct, and to
improve your software

Few, if any, developers build all their code from scratch these days

By building on code of others, we can focus on our work, rather than on
allowing this work to be done

Your benefits translate to other (younger) researchers, so we’re paying
forward

If your work is useful and successful, others might start to contribute and
enhance your work!

Open source software should ideally be hosted by a (reliable)
third party

Free and commercial hosters exist (often these are the same entities) for
your software, for instance GitHub, BitBucket, and SourceForge

These hosters typically offer useful features such as version control and
issue trackers

More and more, social features are also a key part of the framework of
these hosters

It is conceivable that your CV will list the number of pull requests from
GitHub, from instance

Open source code should be hosted on a third-party platform,
like GitHUb, BitBucket, or similar

https://github.com/compomics

When it comes to the analysis of your data, your paper
contains the advertisement…

Gross, Nature Genetics, 2014

… but the code on GitHub represents the actual research
performed

https://github.com/theandygross/TCGA

https://github.com/theandygross/TCGA

Interactive notebooks enable development, code sharing,
and reporting all in one place

a browser-based and interactive

notebook with support for

code, rich text, mathematical

expressions, inline plots and

other rich media

an ideal platform to support

open and reproducible

research

https://jupyter.org

Technically, a Jupyter
notebook could easily
be a publication!

https://jupyter.org/

Open code allows collaboration
as well as reproduction

star

merge

fork

pull

request

reprocess
assess part of a

researcher’s impact

open

issue
issue

closed

https://github.com/logos; https://octicons.github.com

https://github.com/logos
https://octicons.github.com/

As a responsible caretaker of your stuff,
you will sometimes need to take action too

http://peptide-shaker.googlecode.com
Vaudel, Nature Biotechnology, 2015

Maintaining what you do is not trivial, not cheap,
and may even be considered unwise by senior PIs

http://peptide-shaker.googlecode.com
Vaudel, Nature Biotechnology, 2015

Some best practices for (open source) software development

Document your code, document your APIs

Use unit testing to ensure correct code functioning

Use a versioning system to keep track of changes

Use an issue tracker for your development

Where possible, adopt co-development

Pro tip: a lot of commercial software is free if you agree to only use it for
open source development

My institute (tech transfer) does not allow me
to make my code open source

Usually, this is based on perceived potential for commercial exploitation

Talking to the responsible person often resolves issues for software without
commercial prospects

Can also be resolved by adopting a suitable licensing policy (but this is hard
to do retroactively!)

And remember: software itself does not make money that often, but
service and support does

I wish to commercialize my software

Adopt a licensing policy that makes your source code open and free to
academics, but incompatible with commercial exploitation, and provide a
separate license for commercial use

Build a model based on service and support rather than on the tool itself
(essentially the RedHat model)

Use an open source base, and add value in the commercial suite (eg.,
integration, ease of use)

I don’t want anyone else to tell me
what I may have done wrong

Get out of science quick! Scientists will constantly tell you what they think
you do wrong, no code needed

There’s nothing wrong with people helping you to correct your stuff – there
will always be mistakes

Often, people who tell you about your errors based on your code will
actually suggest or provide a solution!

I don’t want anyone to look at my code; it is horrible!

Try to write clean code, regardless of whether it is open; your future self will
thank you profusely!

Moreover, bad code is altogether not very useful; it tends to be
unmaintainable and buggy

Coding best practices are actually easy, and can be learned online for your
language of choice

Having your code out in the open is a great way to motivate yourself to write
better code, the primary beneficiary of which will be you!

I want to maximize my CV by requiring people
to go through me to use my software

While this may sound like an attractive prospect, it is unlikely to land you a
great career

Committees (for funding, tenure, important stuff) look increasingly at your
own achievements and less at bean counting (such as number of co-
authorships)

A better model here would be to start a commercial entity and offer your
expertise and tools as a service

Your collaborators might have a hard time publishing their results,
especially if open practices are competing

My script is so useless, simple, and unimportant that
opening it makes no sense

Fair enough, but why not make it available as supplementary
information then?

It costs nothing, it is unlikely to harm you, and in the worst case
scenario, reviewers ask you to clean it up

Others are going to scoop me when they steal my open
source code

Technically, open source code cannot really be stolen 

By using a third-party hoster with versioning, you can always claim and
prove priority when it comes to this

In practice, these situations are few and far between

An effective measure is peer pressure: consistently name and shame
people who actually do this

‘Researcher-Developer’ is a real job,
and should be treated as such

Building usable tools is sufficiently complex that it requires a separate job title, and
separate specialization

this however, does NOT mean that you can treat tools as black boxes; make sure you
know what happened to your data

commoditization is an ongoing process in research software; learn to take advantage
of it (but see next slide for caveats)

typical academic informatics analyses are not an afterthought in a study; instead these
have become a substantial part of a project

funders increasingly require data analysis and management plans; this is specifically
meant so that you have your bioinfo thought out, planned and funded in your project

for full clarity: Researcher-Developers are not IT helpdesks

Commoditization of academic informatics tools
is typically haphazard at best

Academic informatics (and tool development) is too often an afterthought in the
project, which shows in the results

tool development is actually considered as irrelevant by many experimentalists
because their focus is on getting the data

in rare (but highly unfortunate!) cases, software tools can be considered competitive
and are not shared

development of user-usable solutions is currently heavily counter-incentivized (as
shown previously)

companies can provide good solutions, but cutting-edge approaches tend to appear
later in commercial solutions

many groups are constantly re-inventing the wheel, or perhaps better put: the
rubber, vulcanization, and the inner tube

A sociologist’s take on our efforts
towards (orthogonal) data reuse

Mackenzie and McNally, Theory, Culture and Society, 2013

“This desire to reactivate data is widespread, and Klie et al. are not
alone in wanting to show that ‘far from being places where data goes
to die’ (Klie et al., 2007: 190), such data collections can be mined for
valuable information that could not be obtained in any other way.”

“In attempting to reactivate sedimented data in order to enable its
re-use, their first step was ...”

"... they are experiments in seeing, in furnishing ways of seeing how
data on proteins could become re-usable, could be reactivated as
collective property rather than the by-product of publication."

The previous text can be easily transcribed
to apply to software tool development

After: Mackenzie and McNally, Theory, Culture and Society, 2013

“This desire to reactivate software is widespread, and (you) are not
alone in wanting to show that ‘far from being places where code goes
to die’ (your paper), such code collections can be re-used as valuable
tools that would be difficult to obtain in any other way.”

“In attempting to reactivate sedimented code in order to enable its
re-use, their first step was ...”

"... they are experiments in sharing, in furnishing ways of seeing how
code and tools could become re-usable, could be reactivated as
collective property rather than the by-product of publication."

A field guide to open science
for the newly initiated

www.compomics.com
compomics.github.io

